Ejercicio de muestreo aleatorio
El archivo de Excel contiene 5000 datos, es la población de interés. La media poblacional es:4.9998896 y la desviación estándar poblacional es: 0.025020444. En el siguiente archivo se muestran los resultados obtenidos mediante la extracción de muestras de distintas cantidades de datos una de 300 y la otra de 1000 con las cuales se realizo un estudio estadístico mediante un histograma para facilitar su interpretación, en el estudio también se determinó la media aritmética y desviación estándar.
En el ejercicio se obtuvieron los siguientes resultados:
Podemos observar que existe una gran relación entre las dos muestras, y los datos de la población por lo que se puede inferir que estas muestras son determinantes, también es posible notar el grado de semejanza que se tiene entre ambas muestras, pero la mas cercana a los resultados obtenidos de la población es la muestra de 300 datos, lo que es un punto muy importante a considerar ya que esto generara un ahorro a la hora de el estudio estadístico para determinar la calidad de el proceso productivo.
Vistas de página en total
domingo, 28 de julio de 2013
Gráficos de control.
A continuación les presento un documento con información sobre los gráficos de control para variables y para atributos así como su manera de elaborarse y su importancia a la hora de calificar la calidad de un proceso productivo y su variabilidad.
Gráficos de control from UTT
domingo, 7 de julio de 2013
Gráficos de control y Nelson Rules
A continuación se les muestra una presentación sobre los gráficos de control y su análisis e interpretación mediante las Nelson Rules.
sábado, 29 de junio de 2013
Histogramas
En una fabrica se presentaron algunos problemas con la producción para lo cual fue necesario hacer un estudio a base de 160 datos, para encontrar el motivo de este problema, se separaron los resultados obtenidos en la maquina 1 maquina 2 y operarios A y B.
Se realizo un histograma para cada estudio, y de esta manera fue mas sencillo identificar la variación entre cada uno de estos procesos.
A continuación les presento una hoja de calculo en excel que muestra los resultados obtenidos en cada uno de los estudios realizados.
lunes, 24 de junio de 2013
Correlación Lineal.
A continuación les presento un formulario sobre correlación lineal, con una breve explicación de la razón por la cual se utilizan cada una de las formulas que incluye.
sábado, 22 de junio de 2013
Correlación lineal.
En probabilidad y estadística, la correlación indica la
fuerza y la dirección de una relación lineal y proporcionalidad entre dos
variables estadísticas. Se considera que dos variables cuantitativas están
correlacionadas cuando los valores de una de ellas varían sistemáticamente con
respecto a los valores homónimos de la otra: si tenemos dos variables (A y B)
existe correlación si al aumentar los valores de A lo hacen también los de B y
viceversa. La correlación entre dos variables no implica, por sí misma, ninguna
relación de causalidad
A continuación les
presento un problema de correlación lineal.
La ingeniera Karina tiene a su cargo la planta de ácido y
los resultados de la absorción en dos reactores son los que se muestran en la
tabla siguiente. Se desea determinar el
coeficiente de correlación entre la
temperatura y la absorción así como la recta de regresión lineal. La ingeniera
Karina decide realizar primero el análisis con los datos de ambos reactores y,
posteriormente, estratificar los datos realizando un análisis por cada rector.
En la siguiente tabla se muestran los datos obtenidos en los resultados de ambos reactores.
A partir de los resultados arrojados por la tabla anterior, se elaboro la siguiente gráfica de dispersión
en la cual se muestra la correlación que hay entre la temperatura y la absorción de ambos reactores, el objetivo de la elaboración de esta gráfica es plasmar de una manera mas sencilla los resultados obtenidos anteriormente.
A aparir de lo que podemos observar en la gráfica, se es posible inferir en que existe una buena correlación o correlación positiva entre las variables temperatura y absorción pero para afirmarlo con mayor certeza realizaremos los cálculos para obtener el nivel de correlación que existe entre las variables ya mencionadas.
Enseguida se calculara la R de Pearson que indica que tan fuerte es la correlación entre las variables independiente (X) y dependiente (y), cuanto mas cerca del uno la correlación es fuerte y cuanto mas cerca del cero, la correlación es débil, en el caso de la industria cabe recalcar, que para que se considere que hay una buena correlación es a partir del 0.8.
para lo cual es recomendable hacer el análisis de correlación y regresión completo como se muestra a continuación.
Como podemos observar en los resultados anteriores, encontramos que la R de Pearson nos arroja un resultado de 0.91290665, es necesario que esta sea elevada al cuadrado para obtener un resultado mas exacto el resultado de elevar a la potencia ya mencionada nos da un resultado de 0.83339856, por lo que podemos afirmar que existe una fuerte correlación entre ambas variables.
En todo método estadístico, siempre se debe tomar en cuenta que los resultados que arrojen los datos tienen un error estándar, debido a cualquier factor inmanipulable que este influyendo en tal estudio, por lo cual, si queremos estar completamente seguros de la exactitud de nuestros estudios hay que calcular dicho error.
Al obtener la R de pearson= 0.83339856 y nuestro error estándar = 1.56980695, podemos concluir en que existe una fuerte correlación entre las variables temperatura y absorción con un error estandar minimo, esto indica que la variables ya mencionadas, influyen una sobre la otra.
Para mayor seguridad, se realizo el estudio de ambos reactores por separado los cuales arrojaron los siguientes resultados.
Enseguida les muestro una hoja de calculo en Excel en la que se encuentran los resultados obtenidos en cada uno de los reactores.
Página para publicación de Infografías
Infogr.am!
Es un sitio demasiado confiable, a demás tiene una facilidad para entenderse y para su utilización, además es una herramienta gratuita que nos proporciona acceso a una amplia variedad de gráficos y mapas, que nos permite además insertar imágenes y vídeos para crear este es un sitio muy confiable ademas muy fácil de entender y fácil su utilización, ademas es una herramienta gratuita que nos proporciona acceso a una amplia variedad de gráficos y mapas y que nos permite además insertar imágenes y vídeos para crear infografías de las más vistosas. Los diferentes datos que dan forma a las infografías en Infogr.am se editan en una hoja de cálculo similar a Excel. Cuando tenemos lista nuestra infografía, podemos publicarla en la web de Infogr.am, insertarla en otras webs y compartirla a través de las redes sociales.
Pagina de almacenamiento de datos gratuita
Box
Este sitio es un servicio de almacenamiento remoto muy sencillo de utilizar y bastante potente. Brinda un servicio gratuito con capacidad de 5 GB y si se desea contar con mas capacidad genera un costo, el cual es mínimo.
Es muy practico y fácil de manejar, ademas es muy confiable y seguro.
domingo, 16 de junio de 2013
Los malos jefes
Todos tenemos o hemos tenido jefes a los que los hemos llamado ‘malos jefes’. ¿Pero qué significa realmente ser un mal jefe? Expongo a continuación lo que he observado en empresas, ya sean multinacionales o pymes: que ambos extremos son perjudiciales: en uno encontramos a aquel que no le importa nada sobre la gente, su motivación, su crecimiento y su productividad (y en contrapartida su único foco es el ‘bottom line’) y en el otro está aquel tan preocupado por gustarle a la gente, tener la última tecnología y simpatizar con el equipo que pierde de vista la estrategia, el desafío y la competitividad en el largo plazo. En ambos casos estamos en presencia de un obstáculo. Qué actitud tomar depende del caso, pero te presento algunas ideas para que puedas utilizar, según la situación, para que te mantengas auténtico, seas respetuoso y logres lo que te propones.
Un ejemplo de ello es una experiencia que me ocurrió hace un año, cuando estuve trabajando como inspectora de calidad en una empresa maquiladora de bolsas de aire, en la que si se nos encontraba algún rechazo de parte del cliente nos despedían, pero ese no era el problema, si no la falta de interés departe de los altos mandos hacia los operadores ya que ellos solo se enfocaban en el factor dinero, dejando a un lado el factor humano, exigiendo mas de lo que se podía ofrecer, debido a un mal balanceo de lineas, mal estado de la materia prima, queriendo hacer culpable de su incompetencia a el empleado, lo que como consecuencia tenia que el personal renunciaba a la empresa, generando así altos costos para la misma.
El chisme en el trabajo
¿Como afecta el chisme en el ámbito laboral?
http://proc-industriales.blogspot.mx/2013/05/el-chisme-en-el-trabajo.html
El chisme en el trabajo, es un tema que sin duda alguna genera una gran controversia, esto es por que al tener una mala comunicación en el trabajo esta genera malos entendidos que podrían causar problemas a muchas personas si resultaran involucradas.
Para la mayoría de las personas que trabajan, la actividad que realizan resulta ser rutinaria y en ocasiones aburrida, por lo cual comienzan a decir o hacer cosas que dejan mucho que desear y esto incita a los demás a hacer comentarios que luego se convierten en rumores, o chismes entre pasillos, y como resultado de esto, discrepancia entre las personas.
http://proc-industriales.blogspot.mx/2013/05/el-chisme-en-el-trabajo.html
sábado, 1 de junio de 2013
Reporte técnico
Control estadístico del proceso
Reporte técnico
La fábrica de chavetas dispone de dos líneas de producción que, hasta ahora han cumplido con las expectativas del cliente (TV = 5 cm, tolerancia 0.92 mm). El responsable de calidad tiene dudas acerca del desempeño de las dos líneas de producción debido a algunas devoluciones del cliente. Por lo tanto lleva acabo un muestreo en cada linea encontrando los siguientes resultados.
LSL= 5.092
USL= 4.908
Linea 1:
Máximo = 5.085
Mínimo = 4.915
Al calcular la media estimada, con los valores máximo y mínimo encontramos que esta es igual a el valor deseado es decir es 5, así que se puede inferir que el proceso esta bien centrado.
Tanto el valor máximo (5.085) como el mínimo (4.908) se encuentran dentro de las especificaciones del cliente, por lo cual se infiere en que la fabrica se puede comprometer con el cliente.
No podemos asegurar que nuestras inferencias sean correctas solo si realizamos el estudio completo.
Al realizar el estudio, encontramos que la media aritmética es de 4.9999433, como observamos la diferencia entre esta y el valor deseado son prácticamente iguales, así que se puede asegurar que el proceso esta bien centrado.
La desviación estándar encontrada fue de 0.0453788 esto indica que la variabilidad del proceso es muy alta y que el proceso solo alcanza una desviación estándar hacia ambos lados de la media aritmética (+ -), por lo tanto la idea inicial que teníamos en el sentido de satisfacer los requerimientos del cliente es incorrecta por que esta elevada variabilidad no nos permite cumplir con dichas especificaciones.
Analicemos el histograma correspondiente a el estudio realizado con los datos anteriormente mencionados.
En este histograma podemos observar como los limites inferior y superior no superan las especificaciones del cliente, como mencionábamos anteriormente, se podría inferir en que se puede comprometer con el cliente para la fabricación de dicho producto.
Sin embargo al realzar el estudio completamente encontramos lo siguiente:
Podemos darnos cuenta, que según la regla empírica solo el 68 % de el material en proceso se encuentra dentro de los requerimientos del cliente ya que solo soporta 1 desviación estándar, lo cual nos lleva a afirmar que el trabajo que se esta realizando no es bueno, por lo cual a empresa no se puede comprometer con el cliente de no ser que modifique su proceso y disminuya la variabilidad.
Veamos lo que ocurre con la linea 2:
Máximo = 5.079
Mínimo =4.908
Con los valores máximo y mínimo encontramos la media estimada de 4.99035 y esta es muy aproximada a el valor deseado y se encuentra dentro de las especificaciones del cliente, y podemos inferir en que el proceso esta bien centrado, con estos datos podemos realizar un juicio y suponer que la empresa se puede comprometer con el cliente.
Para poder afirmar lo que suponemos, es necesario hacer el estudio estadístico correspondiente, al hacerlo encontramos que la media aritmética de este proceso es de 4.9941400 la diferencia entre esta y el valor deseado es de 0.005846 así que se puede asegurar que el proceso esta bien centrado, pero siempre teniendo presente que solo es una muestra.
encontramos una variabilidad de el proceso muy alta ya que la desviación estándar es de 0.0362 192, el proceso solo tolera 2 desviaciones estándar lo que es insuficiente para poder comprometerse con el cliente, debido a que hablamos que un 95% del producto esta e buenas condiciones mientras que un 5% seria rechazado generando perdidas a la empresa especialmente si se habla de cantidades grandes de producción.
Analicemos el siguiente histograma con los datos mencionados anteriormente:
En este histograma podemos observar como los limites inferior y superior no superan las especificaciones del cliente, como mencionábamos anteriormente, se podría inferir en que se puede comprometer con el cliente para la fabricación de dicho producto.
Sin embargo al realzar el estudio completamente encontramos lo siguiente:
Podemos darnos cuenta, que según la regla empírica solo el 95 % de el material en proceso se encuentra dentro de los requerimientos del cliente ya que solo soporta 2 desviaciónes estándar, lo cual nos lleva a afirmar que el trabajo que se esta realizando no es bueno, por lo cual a empresa no se puede comprometer con el cliente de no ser que modifique su proceso y disminuya la variabilidad.
sábado, 11 de mayo de 2013
Datos agrupados
A continuación se muestra un conjunto de presentaciones que indican el procedimiento a seguir para elaborar un estudio estadístico con datos agrupados, seguido por un ejemplo para que esto sea entendido más fácilmente.
En esta primera presentación cabe aclarar que el número de intervalos
utilizados es entero debido a que los números son enteros.
Enseguida les mostramos otro ejemplo que consta de una
cantidad de 469 datos con un máximo de 550 y un mínimo de 180, Obteniendo así
un rango de 365, arbitrariamente asignaremos 11 intervalos para agrupar estos
datos, quedando un tamaño de intervalo de 33. Veamos que ocurre:
Como podemos observar en la tabla anteriormente mostrada, no
se están cumpliendo con las 4 condiciones básicas ya que el último intervalo no
agrupa al valor máximo, el ultimo limite superior es más pequeño.
Para corregir este error se pueden seguir 3 distintos métodos:
1.- Cambio de valor inicial.
2.- Cambio de tamaño de intervalo.
3.- Cambio del número de intervalos.
Podemos observar que ya se están cumpliendo las 4
condiciones para poder seguir el procedimiento, pero podemos notar que el
primer límite inferior es igual al valor mínimo, sin embargo el último límite
superior, es superior al máximo por 19 unidades,
lo que hace que la tabla no quede bien equilibrada, no significa que este bien
si no que puede ser mejor.
Esta tabla ya es correcta, podemos continuar con el
procedimiento, pero también podríamos mejorarla, si nos encargamos de ajustar
los valores de tal manera que estos queden más cercanos al mínimo y al máximo, ¿Cómo se puede hacer esto? ,
modificando el tamaño del intervalo, anteriormente observamos que de 33 ajustamos el tamaño del intervalo y lo
hicimos de 35, nos dio un buen resultado pero se podría mejorar, veamos qué
ocurre si lo hacemos con un tamaño de intervalo de 34:
Se cumplen las 4 condiciones, así que podemos continuar el
procedimiento, ya que la tabla es correcta, pero podemos mejorarla más todavía,
equilibrando la tabla ara que los
limites superior e inferior queden mejor centrados a los valores mínimo y el máximo,
¿Cómo haríamos esto?.
Como podemos observar en la tabla anterior se muestra un límite
inferior de 180 y un valor mínimo de 185 quedando una diferencia de 5 unidades,
en cambio el último límite superior es
de 553 y el valor máximo es de 550 quedando una diferencia de 3, hay un ligero
ajuste que podemos hacer, y es que en lugar de comenzar en 180 empecemos en un 181 esto recorrería toda la tabla una
unidad logrando así obtener una diferencia entre el límite Inferior y el valor mínimo
de 4 unidades, y una diferencia entre el límite superior y el valor máximo de 4
unidades.
La tabla quedaría de la siguiente manera:
Ahora si la tabla esta en óptimas condiciones para poder
continuar el procedimiento, cabe aclarar que los intervalos que ajustamos, son
aparentes y ahora estableceremos los reales y posteriormente sus cálculos.
La siguiente presentación muestra como obtener los intervalos reales a partir de los intervalos aparentes calculados anteriormente.
Los intervalos reales se obtienes restando a todos limites
inferiores 0.5 y a los límites superiores sumando 0.5, enseguida se muestra a
tabla:
A continuación se muestran los cálculos que nos permiten
determinar la marca de clase así como
las frecuencias: absoluta, acumulada, relativa y relativa acumulada. La tabla
queda de la siguiente manera:
Datos agrupados 03 from Matematica de Samos
En esta última presentación se muestra como obtener el valor
de las medidas de dispersión de frecuencias:
Datos agrupados 04 from Matematica de Samos
Enseguida se muestra el histograma realizado con los datos anteriores, plasmando en el nuestra media aritmética así como las sigmas (Desviación estándar) que estos datos toleran.
Enseguida se muestra el histograma realizado con los datos anteriores, plasmando en el nuestra media aritmética así como las sigmas (Desviación estándar) que estos datos toleran.
martes, 16 de abril de 2013
Metodos y sistemas de trabajo 1
Introducción
A continuación se presenta el informe final para la elaboración de 30 piezas utilizando material reciclado. En primero lugar elaboramos un prototipo para tomar la muestra y elaborar luego 10 piezas. Dichas piezas sirvieron como prueba acerca de la distribución de las diferentes áreas así como del material que sería necesario para la fabricación de las 30 diademas. La prueba con las primeras 10 piezas nos sirvieron como base para la toma de tiempos. Esta prueba fue de vital importancia para calcular el tiempo que llevaría fabricar el total de piezas.
Conclusión
Al iniciar la práctica ya se contaba con un tiempo previamente establecido para hacer cada una de las operaciones.Otro aspecto importante que ya habíamos tomado en cuenta fueron los sub-ensambles que constaron de pegar las puntas de la base de la diadema con listones de diferentes colores. El segundo sub-ensamble fue el pegado de las plumas y la piedra para formar el adorno de la diadema. Al comenzar a hacer las diademas cada operador se concentró en lo que iba a realizar con el método previamente señalado (sistema de producción en línea), a manera de esperar resultados positivos al término de las dos horas.
Se organizó a los trabajadores de tal forma que las tareas asignadas fueran desarrolladas de manera hábil y competente para llevar acabo 30 piezas. Se observó que en la realización de las 30 piezas no todas fueron aceptadas por el departamento de inspección.Debido a que algunas de ellas no estaban pegadas de manera adecuada o no cumplieron con los estándares de calidad asignados.
jueves, 11 de abril de 2013
Los adolescentes han perdido el interés en Facebook en los últimos 6 meses
A continuación se muestra un análisis de la influencia de las redes sociales,como el "Facebook", y el impacto que generan en la sociedad, basándonos en datos estadísticos de un reciente estudio de la firma Piper Jaffray.
jueves, 4 de abril de 2013
Distribución de probabilidades.
En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los sucesos, cada uno de los sucesos es el rango de valores de la variable aleatoria.
La distribución de probabilidad está completamente especificada por la función de distribución, cuyo valor en cada real x es la probabilidad de que la variable aleatoria sea menor o igual que x.
A continuación se presentan una serie de problemas aplicando tres tipos de distribución tales como: Binomial, Poisson y exponencial.
domingo, 17 de marzo de 2013
Distribución de probabilidades
Una distribución de probabilidad indica toda la gama de valores que pueden representarse como resultado de un experimento si
éste se lleva a cabo.
Es decir, describe la probabilidad de que un evento se
realice en el futuro, constituye una herramienta
fundamental para la prospectiva, puesto que se puede diseñar un escenario de acontecimientos futuros
considerando las tendencias actuales de
diversos fenómenos naturales.
lunes, 25 de febrero de 2013
Probabilidad frecuencial
A continuación se muestra un vídeo sobre probabilidad frecuencial, en el cual se muestran los resultados obtenidos mediante el lanzamiento de 2 dados 150 veces.
domingo, 24 de febrero de 2013
Seguridad Industrial
A continuación se muestra un problema de correlación lineal, acerca de la seguridad industrial en una empresa.
domingo, 10 de febrero de 2013
Datos agrupados
A continuación se presenta un caso de datos agrupados, en los que se requiere analizar una muestra del diámetro de 300 pernos para poder inferir si la empresa "PERNOS YESICA" puede o no, comprometerse con el cliente para la elaboración de dicho producto.
domingo, 20 de enero de 2013
Estadística descriptiva.
Estadìstica descriptiva
Etiquetas:
conceptual,
Estadística descriptiva,
muestra,
muestreo,
población,
tangible
Ubicación:
Mexico.
Suscribirse a:
Entradas (Atom)